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Tien [6] has obtained good agreement with saturated 
nucleate pool boiling experiments using the basic heat- 

Gose et al. [I]. For the small gas injection rates, free 
convection effects must also be considered. 

transfer relation 

Nu = constant Prf Reh 0) 

For gas injection the Reynolds number is given by V,L/v ‘. 
where V, is the velocity of the injected gas, L is a 
characteristic length and Y is the kinematic viscosity. Thus 
equation (1) becomes 

2. 
(2) 

where C is a constant which has the dimensions of 
(length)-*. In Fig. 1 the experimental data (1) for the 3. 
heat-transfer coefficient as a function of the gas injection 
velocity is presented. The gas injection velocity was 
defined as the volumetric gas flow rate divided by the 
area of the heat-transfer surface. Good agreement with 4. 
the data for all the liquids tested is given by equation (5) 
with a value of 11.2 ft-h for C. 5. 

When there are important interaction effects, equation 
(5) is no longer valid. In Fig. 1, the experimental points 
with horizontal tags are in this range and are presented 6. 
to emphasize this effect. Reference may also be made to 
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INTRODUCTION 
IN REFERENCE 1 Sparrow and Lin present an interesting 
analysis of boundary layers with prescribed heat transfer 
and then apply their analysis to flows with simultaneous 
convective and radiative heat transfer. One problem 
considered by them is that of a plate with arbitrarily 
prescribed laminar heat transfer; for this they employed 
an approximate solution given by Eckert and Drake [2] to 
form an integral equation and adjusted a constant so as 
to match the exact results obtainable for the case of 
uniform heat flux. It is the purpose of the present paper 
to give in principle an exact solution for this problem 
for the case of simpiified transport properties and of unity 

Prandtl number; we include the words “in principle” 
because the sohttion is given in terms of eigenfunctions, 
only the first 10 of which have been provided by Fox and 
Libby [3]. However, additional functions can be readily 
obtain side if dered. 

Rather than develop the solution which would corre- 
spond immediately to that of reference 1, we prefer to 
exploit techniques widely used in the aerospace literature 
and to demonstrate the solution in a somewhat more 
general form. First, we carry out the analysis in terms of 
two transformed variables, the so-called Levy-Lees 
variables, v and s which are related to the usual X, y 
Cartesian coordinates of the boundary-layer theory by 
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In equation {l) we leave the properties of the external 
flow within the integral since, as we shall discuss below, 
in somecasesour analysiswjll apply at least approximately 
to flows with pressure gradient, i.e. to flows with varying 
external streams. The presence of the index j in equation 
(1) implies we are considering either two-dimensional 
flows, j = 0, or axisymmetric flows, j = 1. 

We next assume that the gas, which may be either 
homogeneous or heterogeneous, has at each x-wise 
station a product of mass density and viscosity LL 
independent of y so that C = (pp/pe &I z 1 and that the 
velocitv field is described bv the Blasius solution in 
terms &f 7. We note that with C = 1 the velocity within 
the boundary layer over either a two-dimensional, flat 
surface or a cone with supersonic external flow is exactly 
described by this solution; in addition for “cold-wall” 
flows, i.e. those for which pe/pw < 1 and the Mach 
number in the external stream is low, the Blasius solution 
provides an approximate velocity distribution. In this 
latter case the integral in equation (1) must be evaluated 
before an explicit relation between s and x is known. 

Finally, we consider the energy equaticn in terms of the 
stagnation enthalpy ratio, g z h8/&; for low-speed 
flows with gases having fixed composition and constant 
coefficients of specific heat, this ratio is simply T/E, 
but the wider utility of g is clear. We are thus including, 
in general, high-speed, chemically reacting flows. We do, 
however, restrict our attention to the case of unity 
Prandtl nnmber and unity Lewis number; for the case of 
low-speed flows with constant properties such as con- 
sidered in reference 1 the treatment of nonunity Prandtl 
number requires only the computation of new eigen- 
functions for each Prandtl number of interest.* 

DEV~OP~NT OF THE SOLUTION 

With the above preparation we are able to proceed; the 
conservation equation for g is 

where fo = fo(ll> is the Blasius function defined by 

fc”’ + fofo” = 0 

J?(O) =/b’(O) = 0; fo’(o3) = 1 

and with the important surface value 

fo”(0) = fo,w” = 0.469600. 

We are concerned with the convective energy flux at 
the surface; in terms of g and with the assumed transport 

* Cf. references 3 and 4 for treatments wherein the 
assumptions of simplified transports may be relaxed in a 
perturbation sense. 

properties the energy flux qw which includes, in general, 
both thermal and diffusive parts, is given by 

For notational simplicity let 4 = @g/a&, and note that 
if y” = g(s) is specified, and if the distribution of external 
flow properties is known, then through equation (4) so is 
q%G = q&). 

We take as the initial and boundary conditions desired 
of the solution of equation (3) the following: 

g&G co) = 1 7 

g(O, 7) = go(?) = 1 - (1 - fo’) 4(O)/fo,w” 
(5) 

$ (s, 0) = g(s), given but arbitrary. 

The initial condition arises by considering sag/& in 
equation (3) to approach zero as s-+ 0 and by noting that 
a Crocco-type relation must then prevail as s--f 0. If the 
wall entbalpy expressed in terms of g,(O) is eliminated by 
using the definition of a” at s = 0. the above result is 
obtained. 

To construct the solution of equation (3) subject to the 
conditions of eauations (5). we solve first a related nrob- 
lem which maybe stated: & follows: Consider H(.s, 9; [) 
where c is a parameter and where 

i 

(6) 

=l, [<s. J 

The solution is readily obtained by consideration of 
reference 3; we obtain 

= (1 -fo’> 
-r + 2 A, (;)-@*izP,(??), (7) 

j=l i 

where the functions Pj(v) are the eigenfunctions with 
related eigenvalues KI defined by 

Pi<, -tfOPI’ + KffO’Pj = 0 

P{(O) = Pj(co) = 0 (8) 

and where the A3 coefficients are arbitrary and are de- 
termined below. That equation (7) is a solution may be 
confirmed by substitution into equations (6). We have 
changed for clarity and convenience the notation from 
that of reference 3 but the properties of the Pj functions 
have been examined there; it is shown :$at provided the 
eigenvalues are selected so that PI approaches zero 
exponentially as v -co, the eigenvalues are real and 
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positive and the eigenfunctions form a complete ortho- This may be arranged in a more convenient form; we 
gonal set with respect to functions which decay to zero substitute the solution for g and integrate by parts to 
exponentially as v + co ; the orthogonality condition is obtain 

fd Pm Pn dv = &,,n C,. 
fo” 

0 

In reference 3 the first 10 eigenfunctions, eigenvalues 
and squares of the norms, C,, have been given with the 
convenient scaling condition Pj(O) = 1. For complete- 
ness we present the available eigenvalues and values of 
C, in Table 1. 

It is convenient to employ the orthogonality property 
of the eiaenfunctions to determine the A, coefficients; we 
impose The condition that B(s, 1); 5) is continuous at 
s = 5, i.e. that 

o = - (I - fo') fo,w"-' + 5 Ad’i (10) 
j=l 

and obtain 

= l/C1 KifO,L"". (12) 

We thus satisfy equation (10) in an integral sense over the 
semi-infinite range of 7 but cannot expect it to be identic- 
ally satisfied. The step from equation (11) to equation 
(12) is accomplished by substituting within the integrand 
for fo’Pj from equation (8) and by integrating by parts. 
In Table 1 the values of Al for the first 10 values of j are 
given. 

Table 1. Eigenvalues and related coefficients 
-~ 

i KI cj AI 
--- --- 

I 1 2.267 0,939 
2 2.11 3.215 0,239 
3 462 3.830 0.120 
4 651 4.231 0.0772 
5 8.41 4609 0.0549 
6 10.32 4,934 0.0418 
7 12.24 5.199 0.0335 
8 14.17 5.403 0.0278 
9 16.10 5600 0.0236 

10 18.04 5.709 0.0207 

With 2 available, the solution for B(s, 7) may be 
written down in terms of a Duhamel integral, i.e. 

1 -fo’ _ 
g(s, 7) = 1 - T&Y- 4(O) ( i 

s 

+ J G 26.~; 5) ag df. (13) 

0 

g(s, 7) = 1 +4(s) [-(I - fo') fop"-1 + Z AjJ'j(T)l 
j=l 

-,&&(yl/2) s-+’ Pr(~) j f(K@-14(f) df. (14) 
0 

The distribution of wall enthalpy corresponding to the 
prescribed distribution of g is obtained from equation (14) 
by setting 7 = 0; thus 

nu;(s) = 1 + B(s) t- fo,w "-I + : Aj] 
+I 

- “c Aj(~j/2)s-Ki’2 “s ‘K@2’-‘@(f) df (15) 
jzl 0 

Equations (14) and (15) are the desired solution, “in 
principle” exact, but restricted “in practice” because of 
the truncation of the summation. The solution for g&s) 
is formally quite different from that given in reference 1, 
but of course the two may be in good numerical agree- 
ment for a variety of cases. 

CONCLUDING REMARKS 

It is interesting to consider several special cases 
treated in reference 1. We assume 4 = 40 sn+i/a so that 
qw N S* where n may or may not be an integer. Then 
equation (15) yields readily 

j=l 

(16) 

Qualitatively this is in accord with reference 1; thus 
qw - s” corresponds to gzrl ~ 1 - .rn+ljz. 

For the step function in energy transfer, i.e. 4 = 0 for 
0 < s < SO, cj = 40 = constant for s > SO, we obtain 
from equation (15) 

&l(S) = 1 ,o < s < so 

m 
= 1 + 40 [-fop"- + CAj(SO/S)Kl'"], s > so. (17) 

j-1 

Again this solution is formally quite different from the 
approximate solution in reference 1, although numerically 
they might be in good agreement. 

It is beyond the desired scope of this note to carry out 
in detail the comparisons of the approximate analysis 
with the present one. It does appear, however, that the 
above solution and its related solution given in reference 
3, namely the energy distribution, including the heat 
transfer, for arbitrary gw(s), would be useful for solving 
problems involving simultaneous laminar convection 
and radiative heat transfer. We note that for problems 
involving chemical reaction, surface catalysis, and/or 
heterogeneous composition, the solution for gw(s) for 
prescribed energy flux does not yield directly the surface 
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temperature distribution but rather must be combined 
with solutions of the equations of species conservation to 
yield this distribution. Some interesting problems for 
further study would appear to be involved in these cases. 
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